If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2+300b-90000=0
a = 1; b = 300; c = -90000;
Δ = b2-4ac
Δ = 3002-4·1·(-90000)
Δ = 450000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{450000}=\sqrt{90000*5}=\sqrt{90000}*\sqrt{5}=300\sqrt{5}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(300)-300\sqrt{5}}{2*1}=\frac{-300-300\sqrt{5}}{2} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(300)+300\sqrt{5}}{2*1}=\frac{-300+300\sqrt{5}}{2} $
| 8k+3=k+15 | | b^2+300-90000=0 | | 7.8f-22=1.3f | | 8(3x-2)+1=4x-1 | | 5t+13=56-3(t-1) | | (X-8)(x-2)-16=0 | | 3m-14=1 | | 2p-6=-8p+84 | | 7y-9=3(y+5 | | 3c*3c=48 | | 2n+2+3n+6=5n+8 | | 2x+30=4x-20=180 | | 2x+30=4x-20 | | x^2-x-410=0 | | 14x+10=26x-19 | | -4*(5x-8)=22x-52 | | -3k^2+10k+8=0 | | 9(x-11)`=9` | | x-1/3+2x-3/3=4 | | 2x=5+x=12 | | 3•(x-9)=x-13 | | 5^3x+2=311 | | 2/5+4t/4=5t/8 | | 5^3x+7=311 | | y/3-1/15=2y/9 | | 2x+x/6=13 | | 3x/6=13 | | 8k-13k+10=13k-5 | | 7y^=13y+10 | | 13*1.2-6y=22 | | x*40=700 | | 13x-6*1.2=22 |